DISTONIC RADICAL CATIONS

GUIDELINES FOR THE ASSESSMENT OF THEIR STABILITY†

BRIAN F. YATES, WILLEM J. BOUMA[‡] and LEO RADOM

Research School of Chemistry, Australian National University, Canberra, A.C.T. 2601, Australia

(Received in U.S.A. 8 November 1985)

Abstract-Ab initio molecular orbital calculations on the distonic radical cations CH (CH .), NH , and their conventional isomers $CH_3(CH_2)$, NH_2^+ (n = 0, 1, 2 and 3) indicate a preference in each case for the distonic isomer. The energy difference appears to converge with increasing n towards a limit which is close to the energy difference between the component systems CH₁CH₂+CH₃NH₃ (representing the distonic isomer) and CH₃CH₃+CH₃NH⁺ (representing the conventional isomer). The generality of this result is assessed by using results for the component systems $CH_3Y + CH_3XH$ and $CH_3YH + CH_3X^{+}$ (or $CH_{Y}H^{++}+CH_{X}$ to predict the relative energies of the distonic ions $Y(CH_{Y})$ At and their conventional isomers $HY(CH_1)_X^{+}$ (X = NH₂, OH, F, PH₂, SH, Cl; Y = CH₂, NH, O) and testing the predictions through explicit calculations for systems with n = 0, 1 and 2. Although the predictions based on component systems are often close to the results of direct calculations, there are substantial discrepancies in a number of cases; the reasons for such discrepancies are discussed. Caution must be exercised in applying this and related predictive schemes. For the systems examined in the present study, the conventional radical cation is predicted in most cases to lie lower in energy than its distonic isomer. It is found that the more important factors contributing to a preference for distonic over conventional radical cations are the presence in the system of a group (X) with high proton affinity and the absence of a group (X, Y or perturbed C-C) with low ionization energy.

INTRODUCTION

On the basis of extensive theoretical and experimental work, we¹ and others²⁻¹¹ have recently noted that gasphase radical cations in which the charge and radical sites are formally separated often display a stability with respect to unimolecular decomposition which contrasts with that of the neutral molecules from which they are derived. For example, the methyleneoxonium radical cation ($\dot{C}H_2OH_2$) is found both theoretically^{1g,1} and experimentally^{1k,2b} to be more stable than its more conventional isomer, the methanol radical cation ($\dot{C}H_3OH^+$). Again, the ethyleneoxonium radical cation ($\dot{C}H_2CH_2OH_2$) is more stable than the ethanol radical cation ($CH_3CH_2OH^+$).^{1m,2a,12} Very recently, the trimethyleneoxonium radical cation ($\dot{C}H_2CH_2CH_2OH_2$) has also been observed.²¹

We have introduced¹⁴ the term *distonic* (derived from the Greek $\delta u\sigma\tau\omega\sigma$ (*diestos*) and the Latin *distans* meaning *separate*) radical cation to describe the general class of radical cations in which the charge and radical centres are separated. The term *ylidion* describes the subclass of distonic radical cations in which the charge and radical sites are on adjacent centres (e.g. $\dot{C}H_2OH_2$).

Many radical cations have several valence structures, one of which might have separated charge and radical sites. For example, formaldehyde radical cation can be written CH_2 —Ò. Should this ion be regarded as distonic? We would suggest that the term distonic be reserved for those radical cations which arise formally from ionization of neutral systems which are best written as zwitterions (ylides in the case of adjacent charges) or biradicals.^{1p,4d} On this basis, CH_2O^+ (arising from CH_2 —O) and $CH_2CH_2^+$ (arising from CH_2 —CH₂) are not distonic radical cations whereas CH_2OH_2 (arising from CH_2 —OH₂) and CH_2OCH_2 (arising from CH_2OCH_2) are.

The stability of the (gas-phase) distonic radical cations is particularly striking given that the corresponding (zwitterionic or biradical) neutrals are generally not very stable at all. Thus, for example, the neutral systems $\overline{CH_2OH_2}$, $\overline{CH_2CH_2OH_2}$, ... correspond to rather weak complexes of water with methylene, ethylene and so on.¹³

The absence of a stable neutral parent means that the distonic radical cations cannot be generated in the mass spectrometer by direct ionization. Typically, they are produced by means of an intramolecular rearrangement involving concomitant expulsion of a stable small neutral molecule. For example, the methyleneoxonium radical cation is produced^{16, 26} from ionized ethylene glycol by means of the rearrangement-fragmentation reaction:

[†] Presented in part at the Seventh IUPAC Conference on Physical Organic Chemistry, Auckland, New Zealand, August 1984.

^{*}Present address: CSIRO Division of Atmospheric Research, Aspendale, Victoria, Australia.

Fig. 1. Schematic representation of bond lengths between heavy atoms within fully-optimized alltrans structures (3-21G) of distonic radical cations $CH_2(CH_2)_nH_3$ and their conventional isomers $CH_3(CH_2)_nH_3^+$.

It would be highly desirable to be able to predict *a* priori the circumstances under which distonic radical cations might be more stable than their conventional isomers. Guidelines to this effect and preliminary testing of these guidelines are reported in this paper.

We begin with an examination, using *ab initio* molecular orbital theory, of the effect of increasing the separation of the charge and radical sites in distonic radical cations. This is achieved through calculations on the distonic radical cations $CH_2(CH_2)_nNH_3$ and their conventional isomers $CH_3(CH_2)_nNH_2^+$ for n = 0, 1, 2 and 3. In a second series of calculations, we examine whether the relative stabilities of distonic radical cations $Y(CH_2)_nXH$ and their isomers $HY(CH_2)_nX^+$ (X = NH₂, OH, F, PH₂, SH, Cl; Y = CH_2 , NH, O) can be predicted from the energies of the component systems CH_3Y , CH_3XH , CH_3YH , CH_3X^+ , CH_3YH^+ and CH_3X .

METHOD

Ab initio molecular orbital calculations were carried out with modified versions^{14,15} of the Gaussian 80 and 82 programs.^{16,17} Geometry optimizations were performed with the $3-21G^{(*)}$ basis set ¹³ and improved relative energies obtained at the MP2/6-31G^{*} level,^{19,20} either directly or by assuming additivity of basis set enhancement and electron correlation effects:²¹

$$\Delta E(MP2/6-31G^*) \approx \Delta E(HF/6-31G^*)$$

$$+\Delta E(MP2/6-31G) - \Delta E(HF/6-31G).$$
 (1)

All-*trans* arrangements of the heavy-atom skeletons were assumed for the purpose of the analysis presented here. Deviations from such conformations need to be considered when making comparisons with experiment and will be discussed elsewhere.

We should stress that calculations at higher levels of theory would be possible for most of the systems examined in the present paper. Indeed, some of our previous work has included such higher level calculations.[†] However, our principal aim here is to examine the relationship between the directly calculated relative stabilities of distonic and conventional isomers of radical cations and the predictions which can be made from data on appropriate small molecules. We have tackled this task through calculations at modest levels of theory on a large set of radical cations. We believe that the levels of theory employed in this paper are probably sufficient in most (but perhaps not all) cases for the testing of such a relationship and help to obtain a broad-brush picture. On the other hand, absolute results for individual molecules may indeed be modified at higher levels of theory.

RESULTS AND DISCUSSION :

Calculated total energies for optimized structures (Fig. 1) of the distonic radical cations $CH_2(CH_2)_nNH_3$ and their conventional isomers $CH_3(CH_2)_nNH_2^+$ are presented in Table 1 and corresponding relative energies are shown in Table 2. It may be seen that the distonic radical cations are consistently lower in energy than their conventional isomers. The energy difference between the two forms appears to converge with increasing *n* towards a value of about 30 kJ mol⁻¹.

Is there a simple means of predetermining what this limiting energy difference between the distonic and conventional ions might be? Our approach to answering this question has been to examine energy differences between pairs of component systems which might serve as models for the distonic and conventional isomers. The simplest such pairs, $CH_4 + NH_3^+$ (for the conventional isomer) and $CH_3 + NH_4$ (for the distonic isomer), only provide a very rough measure of the conventional-distonic energy difference, yielding 76 kJ mol⁻¹ (ΔE for reaction (2), Table 3). Much better results are obtained for the larger model systems of reactions (3) and (4) of Table 3 for which the calculated energy changes are 42 and 39 kJ mol⁻¹, respectively. These energies are quite close to the limiting value of Table 2.

The correspondence between the limiting behaviour of Table 2 and results for the component systems of Table 3 suggests a possible means of assessment of the relative stabilities of distonic radical cations and their conventional isomers. These stabilities are related to the proton affinities (PAs) and ionization energies (IEs) of the appropriate model systems (e.g. CH_3NH_2 (cf. reaction 3) in the above case). The distonic isomer is favoured by a large proton affinity (which corresponds to a stabilization of the distonic form) or by a large ionization energy (which corresponds to a destabilization of the conventional isomer) of the relevant component molecules. More precisely, the energy change ΔE for reaction (3) is given in terms of PAs, IEs and C-H bond dissociation energies (BDEs) of component systems as

$$\Delta E = PA(CH_3NH_2) + IE(CH_3NH_2)$$

- BDE(CH_3CH_3) - IE(H'). (5)

[†] See, in particular, Refs 1/ and 1r.

Species	Hf/6-31G	MP2/6-31G	HF/6-31G*
CH,NH;	-94.89776	-95.07169	- 94.93148
ĊH ₂ NH ₃	-94.89765	95.07809	94.92994
CH ₃ CH ₂ NH ⁺	-133.92460	134.18845	133.97438
CH ₂ CH ₂ NH,	- 133.93399		133.98190
CH ₃ CH ₂ CH ₂ NH ⁺	- 172.94574		173.01180
CH ₂ CH ₂ CH ₂ NH ₃		- 173.31495	- 173.01903
CH ₃ CH ₂ CH ₂ CH ₂ NH ₂		- 212.41187	- 212.04775
CH ₂ CH ₂ CH ₂ CH ₂ NH ₃	211.97463	-212.42564	- 212.0 548 8
CH ₃	39.54666	-39.62180	- 39.55899
	56.51622	56.63348	- 56.53056
сн₄	40.18055	40.27872	-40.19517
кн;	55.85916	55.94555	- 55.87311
сн₄сн,	78.56867	78.73208	- 78.59706
CH,NH,	95.53832	- 95.74244	95.57260
CH,CH,	79.19747	- 79.38477	79.22861
CH,CH,CH,	117.58639	- 117.84025	117.63117
CH ₃ CH ₂ NH, CH ₃ CH ₂ CH,			

Table 1. Calculated total energies (hartrees) for distonic radical cations CH₂(CH₂)_nNH₃ and their conventional isomers CH₃(CH₂)_nNH₂⁺, and appropriate component systems⁴

*3-21G optimized structures.

Table 2. Calculated relative energies $(\Delta E = E(\text{conventional}) - E(\text{distonic}), kJ \text{ mol}^{-1})$ of distonic radical cations $CH_2(CH_2), NH_3$ and their conventional isomers $CH_3(CH_2), NH_2^+$.

Conventional Distonic CH ₁ NH; CH ₂ NH,	Distonic	Δ <i>Ε</i> °
CH3NH [‡]	ĊH2NH3	13
CH₃CH₂NH ⁺	CH2CH2NH3	36
CH ₃ CH ₂ CH ₂ NH ²	CH2CH2CH2NH3	32
CH ₃ CH ₂ CH ₂ CH ₂ NH ₂ ⁺	ĊH2CH2CH2CH2NH3	31

MP2/6-31G values, evaluated via Eq. (1).

More generally, we might expect that a distonic radical cation $\dot{Y}(CH_2)_*XH$ will normally be more stable than its conventional isomer $HY(CH_2)_*X^+$ (e.g. $Y = CH_2$, $X = NH_2$) if the pair $CH_3\dot{Y} +$ CH_3XH lies lower in energy than the more stable of the pairs $CH_3YH + CH_3X^+$ or $CH_3YH^+ +$ CH_3X , corresponding respectively to

$$\Delta E = E(CH_{3}YH) + E(CH_{3}X^{+})$$

$$-E(CH_{3}\dot{Y})-E(CH_{3}XH)$$
 (6a)

+

or

$$\Delta E = E(CH_{3}YH^{+}) + E(CH_{3}X)$$

$$-E(CH,\dot{Y})-E(CH,XH)$$
 (6b)

being positive. These conditions are equivalent respectively to the requirements that the energy change

$$\Delta E = PA(CH_3X) + IE(CH_3X)$$
$$-BDE(CH_3YH) - IE(H') \quad (7a)$$

Table 3. Calculated relative energies (ΔE , kJ mol⁻¹) for model components of distonic radical cations and their conventional isomers

Reaction	ΔΕ*
(2) $\dot{C}H_3 + \dot{N}H_4 \rightarrow CH_4 + NH_3$	76
(3) $CH_3CH_2 + CH_3NH_3 \rightarrow CH_3CH_3 + CH_3NH_2^+$	42
(4) $CH_3CH_2CH_2+CH_3CH_2NH_3 \rightarrow CH_3CH_2CH_3+CH_3CH_2NH_2^+$	39

MP2/6-31 values, evaluated via Eq. (1).

$$\Delta E = PA(CH_3X) + IE(CH_3YH)$$
$$- BDE(CH_3YH) - IE(H') \quad (7b)$$

be positive.[†] We might expect the rule to hold most faithfully when n is large. Exceptions for "real" (as opposed to conformationally constrained) molecules may result from cyclic intramolecular interaction. There may also be exceptions for small n due to the superposition of specific short-range interactions.

The above guidelines potentially have powerful predictive value. Thus, on the basis of data, either experimental or theoretical, for a limited set of parent molecules (CH₃Y, CH₃XH, CH₃YH, CH₃X⁺, CH₃YH⁺ and CH₃X), predictions which would otherwise not be straightforward may be made of the likely stability

 \dagger Similar relationships have been employed by other authors. See, for example, Refs 4d, 5b and 8c.

of a large set of distonic ions (e.g. OCH_2PH_3) relative to their conventional isomers (e.g. $HOCH_2PH_2^+$). It is important to assess the generality and limitations of this and related predictive schemes and some initial steps in this direction are described below.

Calculated total energies for the set of component systems $CH_3\dot{Y}$, CH_3XH , CH_3YH , CH_3X^+ , CH_3YH^+ and CH_3X with $Y = CH_2$, NH and O, and $X = NH_2$, OH, F, PH₂, SH and Cl are listed in Table 4. Theoretical relative energies, calculated according to Eq. (6a) or (6b), and experimental relative energies,²² calculated according to Eq. (7a) or (7b), are presented in Table 5.

The theoretical and experimental values generally agree to about $40-50 \text{ kJ mol}^{-1}$. Further improvement is likely at higher levels of theory and such calculations are in progress.

According to the guidelines provided above, the results from Table 5 predict that, in most cases within the range of groups X and Y considered here, the

Species	MP2/6-31G*	Species	MP2/6-31G*
CH ₃ NH ⁺	- 95.18927	ĊH ₂ ŇH ₃	-95.19670
CH ₃ OH ^{+/}	-114.94531	ĊH2OH2	-114.97057
CH ₃ F ^{+·}	-138.88291 ^b	Сн₂ғн	-138.88992
CH3PH ⁺	- 381.41070	ĊH ₂ PH ₃	- 381.38992
CH ₃ SH ⁺⁻	-437.62160	CH ₂ SH ₂	-437.58235
CH ₃ Cl ^{+·}	498.94253	CH2CIH	-498.92025
NH ₂ NH ⁺	-111.22524	ŇHŇH,	- 111.17598
NH ₂ OH ⁺	-131.00046	NHOH2	-130.93856
NH ₂ F ⁺	-154.92092	ŇĦŦĦ	-154.85257
NH ₂ PH ^{+·}	- 397.45318	ŃНРН,	- 397.39363
NH₂SH ⁺⁺	-453.66171	NHSH2	-453.57881
NH ₂ Cl ^{+·}	- 514.99398	NHCIH	- 514.89248
HONH ⁺	-131.00046	ÓŇH,	- 130.96583
HOOH+.	-150.76379	OOH,	- 150.70949
HOF+	-175.08480°	О ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	-174.97511°
HOPH ⁺	-417.27086	OPH,	-417.21910
HOSH ^{+·}	-473.46340	OSH2	-473.39239
HOC1+:	- 534.76411°	OCIH	- 534.63336*
CH ₃ CH ₂ NH ⁺	-134.36224	ĊH2CH2NH,	-134.37855
CH ₃ CH ₂ OH ^{+·}	-154.14534	CH2CH2OH2	- 154.16019
CH ₃ CH ₂ F ⁺	-178.09144	ĊH ₂ CH ₂ FH	-178.11961
CH ₃ CH ₂ PH ^{+·}	-420.58002	ĊH₂CH₂PH,	-420.56251
CH ₃ CH ₂ SH ⁺⁺	- 476.7 9 435	Ċн₂сн₂ѕ́н₂	- 476.76285
CH ₃ CH ₂ Cl ^{+·}	- 538.11741	ĊH₂CH₂ĊIH	- 538.12306
NH ₂ CH ₂ NH ₂ ⁺⁺	-150.38103	NHCH, NH,	-150.39802
NH ₂ CH ₂ OH ⁺⁺	-170.21064	NHCH2OH2	-170.18050
NH ₂ CH ₂ F ^{+·}	- 194.18628	NHCH,FH	- 1 94 .15771
NH ₂ CH ₂ PH ⁺	-436.59923	ŇHCH₂PH₃	- 436.57304
NH ₂ CH ₂ SH ⁺⁺	-492.81540	ŇHCH₂ŠH₂	- 492.77661
NH ₂ CH ₂ Cl ^{+·}	- 554.19770	NHCH,CIH	- 554.15747
HOCH ₂ NH ⁺	-170.21064	OCH₂ŇH,	- 170.22169
HOCH ₂ OH ^{+.}	- 190.00010	ŎĊH2ŎH2	190.00986

Table 4. Calculated total energies (hartrees) for distonic radical cations Y(CH₂),XH and their conventional isomers HY(CH₂),X⁺ and appropriate component systems⁴

B. F. YATES et al.

Species	MP2/6-31G*	Species	MP2/6-31G*	
HOCH ₂ F ⁺¹	-213.95071	OCH FH	-213.97346	
HOCH ₂ PH ⁺	-456.42072	OCH,PH,	-456.38542	
HOCH2SH+	- 512.63865	OCH2SH2	-512.58713	
HOCH ₂ Cl ^{+·}	- 573.9583 9	OCH 2CIH	- 573.97385	
CH ₃ CH ₂ CH ₂ NH ₂ ⁺	-173.53087	CH ₂ CH ₂ CH ₂ NH ₃	- 173.54575	
CH ₂ CH ₂ CH ₂ OH ⁺⁺	- 193.32557	CH ₂ CH ₂ CH ₂ OH ₂	-193.32503	
CH ₃ CH ₂ CH ₂ F ⁺	-217.27789	CH,CH,CH,FH	-217.28893	
CH ₂ CH ₂ CH ₂ PH ⁺	-459.74515	CH₂CH₂CH,PH,	459.72886	
CH ₃ CH ₂ CH ₂ SH ⁺⁺	515.96206	CH ₂ CH ₂ CH ₂ SH ₂	- 515.92641	
CH ₃ CH ₂ CH ₂ Cl ⁺⁺	- 577.29774	ĊH ₂ CH ₂ CH ₂ CH	- 577.29532	
NH ₂ CH ₂ CH ₂ NH ⁺	- 189.57308	NHCH2CH2NH3	189.56109	
NH ₂ CH ₂ CH ₂ F ⁺⁺	233.35926	ŃНСН ₂ СН ₂ FН	-233.27687	
HOCH2CH2OH+	- 229.19659	OCH2CH2OH2	-229.15374	
HOCH ₂ CH ₂ F ⁺	-253.15320	OCH2CH2FH	-253.08425	
HOCH ₂ CH ₂ Cl ⁺⁺	-613.17001	OCH2CH2CH	-613.10345	
CH,CH,	- 79.49429	CH ₃ CH ₂	- 78.83518	
CH ₃ NH ₂	- 95.50459	CH ₃ NH	- 94.85172	
СН,ОН	-115.34538	CH,O	-114.68407	
CH,F	-139.33544	CH,SH	-437.95233	
CH,Cl	499.35399	CH'CH'.	- 79.07455	
CH ₃ NH,	-95.86714	CH ₃ PH ₃	- 382.05426	
CH OH,	-115.64102	CH ₃ SH ₂	-438.25010	
CH JFH	- 139.56883	СН,СІН	- 499.59143	

Table 4-continued

* 3-21G^(*) optimized structures unless otherwise specified.
 ^b MP2/6-31G* optimized structure, from Ref. 1*i*.
 * 6-31G* optimized structure.

	ΔΕ	
Component systems	Theor."	Exptl
$\dot{CH_3CH_2} + CH_3\dot{NH_3} \rightarrow CH_3CH_3 + CH_3NH_2^+$	49	3
$CH_3CH_2 + CH_3OH_2 \rightarrow CH_3CH_3 + CH_3OH^{+-}$	96	55
$CH_3CH_2 + CH_3FH \rightarrow CH_3CH_3^+ + CH_3F$	-15	36
$CH_3CH_2 + CH_3PH_3 \rightarrow CH_3CH_3 + CH_3PH_2^+$	-41	-18
$CH_3CH_2 + CH_3SH_2 \rightarrow CH_3CH_3 + CH_3SH^+$	80	— 57
$CH_{3}CH_{2}+CH_{3}CIH \rightarrow CH_{3}CH_{3}+CH_{3}CI^{+}$	-27	17
CH ₃ NH+CH ₃ NH ₃ →CH ₃ NH ₂ +CH ₃ NH ₂	66	25
CH,NH+CH,OH2→CH,NH7 +CH,OH	-110	-110
$CH_{3}NH + CH_{3}FH \rightarrow CH_{3}NH_{2}^{+} + CH_{3}F$	-273	- 243
$CH_3NH + CH_3PH_3 \rightarrow CH_3NH_2 + CH_3PH_2^*$	24	4
$CH_3NH + CH_3SH_2 \rightarrow CH_3NH_2^* + CH_3SH$	-104	-87
CH ₃ NH+CH ₃ ClH→CH ₃ NH ⁺ ₂ +CH ₃ Cl	- 263	- 189
CH,Ŏ+CH,ŇH,→CH,OH+CH,NH;	43	6
CH ₃ O+CH ₃ OH ₂ →CH ₃ OH+CH ₃ OH ⁺	90	58
$CH_3O + CH_3FH \rightarrow CH_3OH^+ + CH_3F$	- 73	-75
CH ₃ O+CH ₃ PH ₃ →CH ₃ OH+CH ₃ PH ₂ .	-47	-15
CH,O+CH,SH2→CH3OH+CH3SH ⁺⁻	- 86	- 54
Сн,0+Сн,сін→Сн,он++Сн,Сі	- 62	-21

Table 5. Comparison of theoretical and experimental estimates of E(conventional - E(distonic), as calculated from component systems (kJ mol⁻¹)

* MP2/6-31G* values.

conventional isomer should be the more stable form. The distonic isomer should be preferred when $X = NH_2$ because of the high calculated proton affinity (952 kJ mol⁻¹) of CH₃NH₂ (stabilizing the distonic form). A preference for the distonic isomer is also predicted for several of the OH-containing systems (e.g. $Y = CH_3$, X = OH and Y = OH, X = OH), largely due to the high IE (1050 kJ mol⁻¹) of CH₁OH (leading to a destabilization of the conventional isomer). However, this result is reversed if there is a more readily ionizable group (than OH) present in the molecule since under such circumstances Eqs (6b) and (7b) (rather than Eqs (6a) and (7a)) apply. Thus, for $Y = NH_{2}$, X = OH, the conventional isomer is predicted to be more stable due to the low IE (828 kJ mol⁻¹) of CH₃NH₂.

Likewise, there is a predicted strong preference for the conventional isomer in the case of the pairs with X = F, Y = NH and X = Cl, Y = NH. This appears to be attributable to a combination of the relatively low proton affinities of CH_3F (613 kJ mol⁻¹) and CH_3Cl (623 kJ mol⁻¹) and the relatively low ionization energy of CH_3NH_2 already noted above.

Explicit calculations have been carried out for a selection of the distonic and conventional radical cations with n = 0, 1 and 2 in order to test the predictions of Table 5. Total energies are included in Table 4, a selection of optimized structures is displayed in Fig. 2, and relative energies are shown in Table 6.

Some of the optimized structures show interesting features including the long-bonded geometries noted previously for the radical cations of other saturated molecules.^{1m,23-25} Details of the structural effects are tangential to the aim of this paper and will be discussed elsewhere together with results of higher-level

 \uparrow Calculated values are IE_a(NH₂CH₂F) = 913 kJ mol⁻¹ compared with IE_a(CH₃NH₂) = 828 kJ mol⁻¹.

calculations on these species. We note at this stage, however, that deviations from idealized geometries for both the conventional and distonic radical cations are likely to contribute to differences between the directly calculated and predicted relative energies for some of the systems under consideration.

We find that when n = 0, i.e. for comparisons of HYX⁺ with YXH, the directly calculated relative energies differ substantially in several instances from the values based on the consideration of component systems. Errors of more than 200 kJ mol⁻¹ can be seen. This result is not surprising and reflects the dominance in some of the systems of specific shortrange interactions between the directly-bonded X and Y groups. The *direction* of the error in these worst cases corresponds to the conventional isomer being more stable than expected. This may be attributed to stabilizing π -type overlap in species such as NH₂NH⁺₂.

When n = 1, i.e. in comparisons of HYCH₂X⁺⁻ with YCH₂XH, there is a significant improvement and, in most cases, calculated and predicted relative energies lie within about 50 kJ mol⁻¹ of one another. Direct π -type overlap is no longer possible and, for example, the error for NH₂CH₂NH⁺ VS $\dot{N}HCH_{2}NH_{3}$ is about 20 kJ mol⁻¹ compared with a nearly 200 kJ mol⁻¹ error noted above for the corresponding n = 0 systems. There are, however, a few cases where the agreement is very poor (e.g. NH₂CH₂F⁺ vs NHCH₂FH) suggesting that interaction between the X and Y groups is still significant. For example, the fluoro substituent in NH_2CH_2F makes the ionization energy considerably greater than that of the component system CH₃NH₂.[†] As a consequence, the conventional radical cation NH₂CH₂F⁺ is less stable than expected. This additional relative

Fig. 2. Bond lengths between heavy atoms and skeletal bond angles within fully optimized structures (3-21G^(*)) of distonic radical cations Y(CH₂)_nXH and their conventional isomers HY(CH₂)_nX⁺. Formal location of charge and radical sites shown for distonic ions.

destabilization of the conventional isomer is found for many of the systems with X = F or Cl. As can be seen from Fig. 2, some of the optimized geometries differ considerably from those of idealized models. The component molecules used in the prediction scheme are therefore less appropriate in some cases and this may also contribute to the deviations seen in Table 6.

We have only carried out a limited number of calculations at this stage for the n = 2 systems, i.e. comparisons of HYCH₂CH₂X⁺ with \dot{Y} CH₂CH₂XH. It should be emphasized that these calculations have been performed with the heavy-atom skeleton in a constrained *trans* arrangement for the purpose of testing our predictive scheme. In practice, some of these species may well prefer alternative arrangements. Our results indicate substantially reduced errors for some of the n = 1 problem cases. For example, the error for NH₂CH₂CH₂F^{+.} vs NHCH₂CH₂FH is 57 kJ mol⁻¹ compared with nearly 200 kJ mol⁻¹ for the corresponding n = 1 systems. However, new problems arise for comparisons such as NH₂CH₂CH₂NH⁺₂⁺ vs

NHCH₂CH₂NH₃. It appears that the two NH₂ substituents in NH₂CH₂CH₂NH₂⁺⁺ stabilize the structure corresponding to ionization from the C_e --- C_β bond to such an extent that it is more stable than the structure corresponding to ionization from the nitrogen lone

Fig. 2-continued.

pair.²³ The latter would have been expected to be more stable on the basis of ionization energy data for the component molecules (CH₃NH₂ and CH₃CH₃).† As a consequence, the conventional isomer (which

[‡] Note added in proof: calculations have now been completed for NH₂CH₂CH₂CH₂CH₄[†] and NHCH₂CH₂CH₂CH₃. The calculated energy difference of 53 kJ mol⁻¹ in favour of the distonic isomer compares well with the 66 kJ mol⁻¹ predicted on the basis of component systems. displays a long $C_4 - C_\beta$ bond) is considerably more stable than predicted. Similar considerations apply to $CH_3CH_2CH_2OH^+$, $HOCH_2CH_2OH^+$, $HOCH_2$ CH_2F^+ and $HOCH_2CH_2Cl^+$, the remaining poor cases in Table 6.

Calculations have not yet been completed on systems with n = 3. However, we anticipate that problems attributable to ionization from C—C bonds should be less severe since reinforcing effects of substituents on the C_{α} — C_{β} bond are no longer possible. The results for comparisons such as NH₂CH₂CH₂CH₂NH₂⁺ vs NHCH₂CH₂CH₂NH₃ may well be close to those predicted from a consideration of component systems.[‡]

 $[\]uparrow$ Calculated values for the component molecules are IE₄(CH₃NH₂) = 828 kJ mol⁻¹ and IE₄(CH₃CH₃) = 1102 kJ mol⁻¹ whereas in fact IE₄(NH₃CH₂CH₂NH₂) = 732 kJ mol⁻¹.

		$E(\text{conventional}) - E(\text{distonic})^{*}$			
Conventional	Distonic	n = 0	Calc. $n = 1$	<i>n</i> = 2	Pred.*
CH ₃ (CH ₂),NH ⁺	ĊH _X (CH ₂),NH ₃	20	43	39	49
CH ₂ (CH ₂),OH ^{+·}	ĊH,(CH,),OH,	66	39	— 1	96
CH ₃ (CH ₂),F ^{+·}	ĊH2(CH2),FH	18	74	29	-15
CH ₃ (CH ₂),PH ⁺ ₂	CH2(CH2),PH3	- 55	- 46	-43	-41
CH ₃ (CH ₂),SH ⁺⁺	CH2(CH2), SH2	-103	- 82	- 94	-80
CH ₃ (CH ₂),Cl ^{+·}	ĊH,(CH,),ĊIH	- 58	13	-6	- 27
NH ₂ (CH ₂),NH ⁺	NH(CH ₂), NH,	-129	45	-31	66
NH ₂ (CH ₂),OH ⁺⁺	ŇH(CH₂),ÔH₂	-163	79		-110
NH ₂ (CH ₂) _# F ^{+*}	ŇH(CH₂),FH	- 179	- 75	-216	- 273
NH ₂ (CH ₂),PH ⁺⁻	ŇH(CH ₂),PH ₃	-156	- 69		- 24
NH ₂ (CH ₂),SH ⁺⁻	ŇH(CH₂),SH₂	-218	- 102		-104
$NH_{2}(CH_{2})_{n}Cl^{+}$	ŃH(CH ₂),ĊIH	- 266	- 106		263
HO(CH ₂),NH ⁺ ₂	Ó(CH ₂), NH,	-91	29		43
HO(CH ₂),OH ⁺⁺	O(CH ₂),OH ₂	- 143	26	-113	90
HO(CH ₂),F ⁺	Ó(CH ₂),FH	-288	60	-181	-73
HO(CH ₂),PH ⁺	O(CH ₂),PH ₃	-136	93		-47
HO(CH ₂),SH ⁺⁺	O(CH ₂),SH ₂	-186	- 135		-86
HO(CH ₂) _n Cl ^{+·}	Ó(CH₂),ĊIH	- 343	41	-175	-62

Table 6. Comparison of calculated and predicted relative energies (kJ mol⁻¹) of distonic radical cations $\hat{Y}(CH_3)_*XH$ and their conventional isomers $HY(CH_3)_*X^{+-}$

"MP2/6-31G* values.

^bFrom Table 5.

CONCLUDING REMARKS

The calculations in this paper indicate that the energy difference between the distonic radical cations CH₂(CH₂), NH₃ and their conventional isomers $CH_3(CH_2)_n NH_2^+$ converges with increasing *n* towards a limit which may be approximated using energy data for appropriate small component systems. Generalization of this observation suggests that data for a limited number of small molecules (CH₃Y, CH₃XH, CH₃YH, CH₃X⁺, CH₃YH⁺ and CH₃X) should permit the prediction of relative energies of a much larger set of distonic and conventional radical cations. However, explicit calculations on the larger systems reveal a sufficient number of exceptions that caution must be exercised in applying this and related predictive schemes. The predictions based on the small components are least useful for the species with n = 0 (i.e. ÝXH vs HYX⁺). For these systems, the conventional isomer is often more stable than expected due to favourable π -type interactions between the directlybonded X and Y groups (e.g. NH2NH2"). Such interactions are not important for the systems with n = 1(i.e. $\dot{Y}CH_2XH$ vs $HYCH_2X^{+1}$). The largest errors now occur for substituents (notably X = F) which have a large perturbing effect on the properties (notably the ionization energy) of the parent molecules. The conventional isomer is often less stable than expected in these cases. The preliminary calculations for systems with n = 2 (i.e. comparisons of YCH₂CH₂XH with $HYCH_2CH_2X^+$) appear to indicate substantially

reduced effects of this type. However, substantial deviations between predicted and calculated relative energies now occur for several systems (e.g. NH2CH2CH2NH2) for which the lowest-energy conventional isomer corresponds to ionization from the $C_{a}-C_{b}$ bond rather than from a heteroatom lone pair. The conventional isomer is considerably more stable than expected in these cases. Finally, we note that the most favourable circumstances for a distoric radical cation to be preferred over its conventional isomer occur for systems which contain a group (X) with a high proton affinity but which do not contain a group (X, Y or perturbed C-C) with a low ionization energy. Further studies are in progress to determine the effect of higher-level calculations and of complete geometry relaxation (n = 2 systems) on the results presented here and to investigate the applicability of the predictive scheme to longer-chain-length radical cations.

REFERENCES

^{1e} W. J. Bouma, J. K. MacLeod and L. Radom, Nouv. J. Chim. 2, 439 (1978); ^bW. J. Bouma, J. K. MacLeod and L. Radom, J. Chem. Soc. Chem. Commun. 724 (1978);
 ^e W. J. Bouma, J. K. MacLeod and L. Radom, J. Am. Chem. Soc. 101, 5540 (1979); ⁴W. J. Bouma, J. K. MacLeod and L. Radom, J. Am. Chem. Soc. 102, 1970; ⁴W. J. Bouma, J. K. MacLeod and L. Radom, J. J. Bouma, J. K. MacLeod and L. Radom, J. Am. Chem. Soc. 102, 2246 (1980); ⁷W. J. Bouma, R. H. Nobes and L. Radom, Norge Stretorm. 17, 315 (1982); ⁴W. J. Bouma, R. H. Nobes and L. Radom, Norge Mass Spectrom.

J. Am. Chem. Soc. 104, 2929 (1982); *W. J. Bouma, J. K. MacLeod and L. Radom, Ibid. 104, 2930 (1982); 'W. J. Bouma, B. F. Yates and L. Radom, Chem. Phys. Lett. 92, 620 (1982); ¹R. H. Nobes and L. Radom, Org. Mass Spectrom 17, 340 (1982); ⁴W. J. Bouma, J. M. Dawes and L. Radom, Ibid. 18, 12 (1983); M. J. Frisch, K. Raghavachari, J. A. Pople, W. J. Bouma and L. Radom, Chem. Phys. 75, 323 (1983); "W. J. Bouma, R. H. Nobes and L. Radom, J. Am. Chem. Soc. 105, 1743 (1983); "W. J. Bouma, J. K. MacLeod, R. H. Nobes and L. Radom, Int. J. Mass Spectrom. Ion Phys. 46, 235 (1983); °R. H. Nobes, W. J. Bouma and L. Radom, J. Am. Chem. Soc. 106, 2774 (1984); 'L. Radom, W. J. Bouma, R. H. Nobes and B. F. Yates, Pure Appl. Chem. 56, 1831 (1984); *B. F. Yates, W. J. Bouma and L. Radom, J. Am. Chem. Soc. 106, 5805 (1984); 'B. F. Yates, R. H. Nobes and L. Radom, Chem. Phys. Lett. 116, 474 (1985).

^{2a} J. K. Terlouw, W. Heerma and G. Dijkstra, Org. Mass Spectrom. 16, 326 (1981); *J. L. Holmes, F. P. Lossing, J. K. Terlouw and P. C. Burgers, J. Am. Chem. Soc. 104, 2931 (1982); 'J. K. Terlouw, W. Heerma, G. Dijkstra, J. L. Holmes and P. C. Burgers, Int. J. Mass Spectrom. Ion Phys. 47, 147 (1983); ⁴J. L. Holmes, P. C. Burgers, J. K. Terlouw, H. Schwarz, B. Ciommer and H. Halim, Org. Mass Spectrom. 18, 208 (1983); 'E. Weger, K. Levsen, I. Ruppert, P. C. Burgers and J. K. Terlouw, Ibid. 18, 327 (1983); J. L. Holmes, F. P. Lossing, J. K. Terlouw and P. C. Burgers, Can. J. Chem. 61, 2305 (1983); *J. K. Terlouw, J. Wezenberg, P. C. Burgers and J. L. Holmes, J. Chem. Soc. Chem. Commun. 1121 (1983); *J. K. Terlouw, C. G. de Koster, W. Heerma, J. L. Holmes and P. C. Burgers, Org. Mass Spectrom. 18, 222 (1983); 'J. L. Holmes, A. A. Mommers, J. E. Szulejko and J. K. Terlouw, J. Chem. Soc. Chem. Commun. 165 (1984); 'P. C. Burgers, J. L. Holmes, J. K. Terlouw and B. van Baar, Org. Mass Spectrom. 20, 202 (1985).

¹⁴ H. Halim, B. Ciommer and H. Schwarz, Angew. Chem. Int. Ed. Engl. 21, 528 (1982); ^bY. Apeloig, B. Ciommer, G. Frenking, M. Karni, A. Mandelbaum, H. Schwarz and A. Weisz, J. Am. Chem. Soc. 105, 2186 (1983); ^cY. Apeloig, M. Karni, B. Ciommer, G. Frenking and H. Schwarz, Int. J. Mass Spectrom. Ion Proc. 55, 319 (1983); ^dH. Schwarz, Mass Spectrosc. 32, 3 (1984); ^dG. Frenking and W. Koch, J. Mol. Struct. Theochem. 110, 49 (1984); ^fB. Ciommer, G. Frenking and H. Schwarz, Int. J. Mass Spectrom. Ion Proc. 57, 135 (1984); ^dT. Weiske, H. van der Wel, N. M. M. Nibbering and H. Schwarz, Angew. Chem. Int. Ed. Engl. 23, 733 (1984); ^fF. Maquin, D. Stahl, A. Sawaryn, P. v. R. Schleyer, W. Koch, G. Frenking and H. Schwarz, J. Chem. Soc. Chem. Commun. 504 (1984).

- ⁴⁶ M. L. Gross and F. W. McLafferty, J. Am. Chem. Soc. 93, 1267 (1971); ^bP. O. Danis, C. Wesdemiotis and F. W. McLafferty, *Ibid.* 105, 7454 (1983); ^cC. Wesdemiotis, R. Feng and F. W. McLafferty, *Ibid.* 107, 715 (1985); ^dC. Wesdemiotis, P. O. Danis, R. Feng, J. Tso and F. W. McLafferty, *Ibid.* 107, 8059 (1985).
- ⁵⁶ S. Hammerum, Tetrahedron Lett. 22, 157 (1981); ⁵ S. Hammerum, J. B. Christensen, H. Egsgaard, E. Larsen, P. J. Derrick and K. Donchi, Int. J. Mass Spectrom. Ion Phys. 47, 351 (1983); ⁵ S. Hammerum, D. Kuck and P. J. Derrick, Tetrahedron Lett. 25, 893 (1984); ⁴ S. Hammerum and P. J. Derrick, J. Chem. Soc. Chem. Commun. 996 (1985); ⁵ S. Hammerum, S. Ingemann and N. Nibbering, Org. Mass Spectrom. 20, 314 (1985); ¹G. Sozzi, J. P. Denhez, H. E. Audier, T. Vulpius and S. Hammerum, Tetrahedron Lett. 26, 3407 (1985).
- ⁶⁶ M. L. Gross, J. Am. Chem. Soc. 94, 3744 (1972); ^bF. W. Crow, M. L. Gross and M. M. Bursey, Org. Mass Spectrom. 16, 309 (1981); ^cT. M. Sack, R. L. Cerny and M. L. Gross, J. Am. Chem. Soc. 107, 4562 (1985).
- ^{7a} T. H. Morton and J. L. Beauchamp, J. Am. Chem. Soc. 97, 2355 (1975); ^bR. R. Corderman, P. R. Le Breton, S. E. Buttrill, A. D. Williamson and J. L. Beauchamp, J. Chem. Phys. 65, 4929 (1976).

- ⁴⁰ H. E. Audier, A. Milliet and J. P. Denhez, Org. Mass Spectrom. 18, 131 (1983); ^bH. E. Audier and A. Milliet, Int. J. Mass Spectrom. Ion Phys. 47, 475 (1983); ^cH. E. Audier, J. P. Denhez, A. Milliet and G. Sozzi, Can. J. Chem. 62, 931 (1984); ⁴H. E. Audier, A. Milliet, G. Sozzi and J. P. Denhez, Org. Mass Spectrom. 19, 79 (1984); ^eH. E. Audier and J. C. Tabet, Ibid. 20, 313 (1985).
- ⁹⁸G. Bouchoux and Y. Hoppilliard, Int. J. Mass Spectrom. Ion Proc. 55, 47 (1983); ^bG. Bouchoux, R. Flammang and A. Maquestiau, Org. Mass Spectrom. 20, 154 (1985).
- ^{10a} W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle and J. A. Pople, *Prog. Phys. Org. Chem.* 11, 175 (1974); ⁶J.
 M. F. van Dijk, J. F. M. Pennings and H. M. Buck, J. Am. Chem. Soc. 97, 4836 (1975); ⁶M. J. S. Dewar and H.
 S. Rzepa, *Ibid.* 99, 7432 (1977); ⁴G. Eckhardt, Org. Mass Spectrom. 14, 31 (1979); ^eP. N. T. van Velzen and W. J. van der Hart, Chem. Phys. Lett. 83, 55 (1981); ⁷J. R. Bews and C. Glidewell, J. Mol. Struct. 104, 105 (1983); ^aJ. J.
 Butler, T. Baer and S. A. Evans, J. Am. Chem. Soc. 105, 3451 (1983); ^aS. G. Lias and T. J. Buckley, Int. J. Mass Spectrom. Ion Proc. 56, 123 (1984); ^rR. D. Bowen and A. Maccoll, Org. Mass Spectrom. 20, 331 (1985).
- ¹¹ A recent report of some interesting distonic radical cations in solution may be found in: T. Miyashi, Y. Takahashi, T. Mukai, H. D. Roth and M. L. M. Schilling, J. Am. Chem. Soc. 107, 1079 (1985).
- ¹² For an earlier theoretical study of CH₂CH₂OH₂, see B. T. Golding and L. Radom, J. Am. Chem. Soc. **98**, 6331 (1976).
- ¹³ J. A. Pople, K. Raghavachari, M. J. Frisch, J. S. Binkley and P. v. R. Schleyer, J. Am. Chem. Soc. 105, 6389 (1983).
- ¹⁴ L. Farnell, R. H. Nobes, D. Poppinger and B. F. Yates, unpublished.
- ¹⁵J. Baker, R. H. Nobes and D. Poppinger, unpublished.
- ¹⁶ J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Seeger, D. J. DeFrees, H. B. Schlegel, S. Topiol, L. R. Kahn and J. A. Pople, *Quant. Chem. Prog. Exchge* 13, 406 (1981).
- ¹⁷ J. S. Binkley, M. J. Frisch, D. J. DeFrees, K. Raghavachari, R. A. Whiteside, H. B. Schlegel, E. M. Fluder and J. A. Pople, Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.
- ¹⁶J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc. 102, 939 (1980); ⁵W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople and J. S. Binkley, *Ibid.* 104, 5039 (1982).
- ^{19a} W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys. 56, 2257 (1972); ⁴P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973); ^cM. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc. 104, 2797 (1982); ^dM. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys. 77, 3654 (1982).
- ^{20e} C. Møller and M. S. Plesset, *Phys. Rev.* 46, 618 (1934);
 ^bJ. A. Pople, J. S. Binkley and R. Seeger, *Int. J. Quantum Chem. Symp.* 10, 1 (1976).
- ^{21a} R. H. Nobes, W. J. Bouma and L. Radom, Chem. Phys. Lett. 89, 497 (1982); ^bM. L. McKee and W. N. Lipscomb, J. Am. Chem. Soc. 103, 4673 (1981).
- ²² Calculated using data from: "S. G. Lias, J. F. Liebman and R. D. Levin, J. Phys. Chem. Ref. Data 13, 695 (1984); "H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, *Ibid.* 6, Suppl. 1 (1977); "R. D. Levin and S. G. Lias, *Ionization Potential Measurements 1971-1981*. U.S. Government Printing Office, Washington (1982); "D. F. McMillen and D. M. Golden, Ann. Rev. Phys. Chem. 33, 493 (1982).
- ^{23a} D. J. Bellville and N. L. Bauld, J. Am. Chem. Soc. 104, 294 (1982), and refs therein; ^bD. J. Bellville, R. A. Pabon and N. L. Bauld, *Ibid.* 107, 4978 (1985).
- ²⁴ W. J. Bouma, D. Poppinger and L. Radom, Isr. J. Chem. 23, 21 (1983).
- ²³ T. Takeuchi, S. Veno, M. Yamamoto, T. Matsushita and K. Nishimoto, *Int. J. Mass Spectrom. Ion Proc.* 64, 33 (1985).